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ABSTRACT

ThlS report descrlbes the begmmnw of a study of the propagatmn of small-—
.amphtude d1sturbances in a system consastmg of a relativistic electron beam of = -
. finite radius penetrating a plasma, The analysis is restrxcted to those modes |
satisfying .the. high-frequency criterion, lw - k V;l%>> wé , where V; is the drift
velocity and “"5 the betatron frequency of the loeam The main conoern of this |
work will be to ascertain the. general efiects of beam and plasma temperature _

-upon the stablllty of these hlgh—frequency modes.

© The colhsmnless Boltzmann equat1on is employed to calculate the temper—
‘ature—dependent current response of hoth the beam and the plasma “The System
is assumed to bé neutral with uniform densities both 1n51de and outside the beam -
and, conmstent with the hlgh—frequency crlterlon the pinch field is neglected

In th1s report only the g = 0 normal mode is considered.

' D1spers1on relatlons are derived for the cases: of an mfnnte plasma of a

R _ plasma bounded by a cylmdrmal conductmg Wall and of a plasma bounded by

vacuum.,: All edge effects in the plasma are neglected The dlspersmn relations
- have been W 1tten dovm for a cold plasma only but the stralghtforward general-

ization to a warm plasma is indicated and will be carried through ina 1ater _
- report. The neo"lect of the plasma temperature restrmts the d1spersmn relat1ons 3' ]

- of th1s report to modes that-sat1sfy

- 'lw+i i? KT,
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as well as the high frequency criterion. Here Ve. is the plasma el‘ectrdn coll_ision o
frequency, K is Boltzmann's éonstént, T, is the plasma electron temperature,-
and me? is the electron rest energy. For nonrelativistic plasma thermal |
'.energ.ies, the pla'sma' temperature will therefore be of importancé only when

Y, << ke >> w+ wB .

L w/j
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_ I INTRODUCTION

| An analysis of a finite radius beam-plasma system is begun in this report.
The main concern of this work. will be to determine the effects of plasma and
beam femperature upon the stability of the.'.syste'm. The analysis is restricted -
" to modes for which the pinch field of the 'beam ‘can be ignored, -.Only the 4 = 0
normal mode is considered here. Higher normal modes will be treated in a

- subsequent report. -

The problem is 1nvest1gated in the framework of the two-mass apprommatmn,
“which is valid for an extreme relat1v1st1c beam. The 1nf1n1te1y long electron
“beam and plasma are as_sumed to have uniform densities both inside and outside

the beam radius. The further assumption of charge neutrality nece-ssitates a

| discontinuous jump in the plasma density at the beam radius. (That is, in the -
unperturbed system, .noir + gy = ng for T < ro a.nd Ngy .# Tigg for r > rywhere
Dy, ﬁez , and ny are the densities of the beam electron's, -plaema elect_rons,.' and

a plasma ions, respectively, and ry is the beam radius. The usual weak be_am

: assumptmn correSponds to taking ny << nog and ngy = * Dog. for all r.)-

D1spersmn relations are derived for an mflmte plasma, for a plasma con-

e fined by a cylmdrmal oonductmg Wall and for a finite radlus plasma bounded by .

-Vaeuum, _All edge e_ffect_s m-the plasma,_ such as the ‘plasma sheath, are neglected.
: ~The current .response'of' both the beam and the plasma are calculated ..using
“the Bol_tzmann eqﬁation.' ‘The restriction to high—frequency modes is imposed so
that the self—magne'tic field' of the beam can be neglectédﬂ leading to great'

._ 51mp11flcat1on It will be shown in detall in the second report of this. series,

- that the neglect of- the pmch fleld 1mposes the followmg restramt on the frequency. -

___Iw- - k'Votz__§> w% o
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- where V, is the drift Velocify and w, the betatron frequendy of the beam, Henée,

i

for example, the "hose instability” in which lo -k V,/?~w% will not be treated -

in this work.




' hnearlzed by wrltmg

II° MATHEMATICAL FORMULATION

" Each eeparate particle species is taken to be de scribed by an exact one-

particle distribution function, £, P, t), depending upon space, relativistic

. '.'mcmentum and t1me (the superscrlpt T, will always refer to exact or ' True') _

) Wh1ch S&tleleS the collisionless Boltzmann equation

8fq — ""T ‘ . '
T . , T _ o
S + Va_ V f Vpafa 0 | (1)
- where = BT -
o di Py T Yy Vg
, R RV OO 7 /
LS T _.4..
B = t. .“ a[—ﬁ * V x B

and the notation 1s used such that =1 for the beam electrons o= 2 and @ = 3 ‘

denotes the plasma electrons and ions, respectlvely The charge eis defmed by .-

o settmg €19 = ~e and e3 --+e

- To analyze the stab111ty of the’ system, the effect of a small perturbatmn

_ from equilibrium is calculated in the 11near apprommatmn That is, Eq (1) is

fT ) fo . 3f | .. i . (2)“

Where fo is the equ111br1um dlstrlbutlon and f represents the perturbatlon such

that If] << | fol Thus keepmg terms only to flrst order in perturbed quant1tles,._ L



SOy

' part1cle orbit

- ’_I‘heref_ore, along the exact orbit;

(3)

where the exact force has been separated, ?T = 'ﬁ; + _'f,' into the force due to

' the equilibrium fields

FOG: = e-q' [E0 + EVOL X BO]
and that due to the perturbations of the fields

- > 1o o
¥, = eq[E+—VaxBr-__.

B

. For any functibn, g(}?, D, f), th‘e‘ total time derivative is defined by

dt
Hence Eq (1) is ]ust Liouville's theorem wh_lch states that along the exact
'dfg
dt

x -z ®

| Equations (3) and (6) are 6bviously equivalent. Hence _a' formal solution to Eq. '(3)_": Vi
-fa@. B.t) - fa(xo, Bo, to) f [V’ . V'fm+ea{E + -v' x B }:I V‘fo ’dt' -

@

(Exact Orbit)

% - _—g +V.%g+F-%e. @

de . "

Sy -



L

- where all quantit’i'es in the int'egrand are evaluated at time t" along the exact orbit,

' as indicated by the primes. The first order approximation to Eq. '(7) for f, is

obtamed by 1ntegrat1ng along the zero-order orbit (henceforth denoted by ZOO), :

. whlch is defined by the ccnd1t10n that, along this orbit,

e S h aqn Ll
’ VOL '_vxqfﬂa_"‘ eoc.[Eo .+ Evoz_ X BU]. Vpaf()ol = 0. ( )

© Inthe ana.lysm of instabilities it is assumed that all pcrturbations are infinites-
_ imalatt = - w. Therefore the basic equation for the perturbation of the

..Boltz‘mann distribution is.

£, &P, t) e, f [‘ﬁw %?' x ﬁ*]-_ Vohhdt' . @)
(ZOO) | | | |

To deterrmne the tlme development of a disturbance in the system it is

' necessary to solve Maxwell's equations, subject to the proper boundary condi- .

t1ons The current and charge distributions are calculated usmg the Boltzmann

'_dlstrlbutlon fu.nctlcns Maxwell's equatmns for the exact f1e1ds are S

v.ET= '471'.0Q R SR By S (103)
o vx ET=s - = o8 - (10b). -
: c ot .
V'X_BT'.:_ f.‘l_TfJT_,_ l .B__E;"... e e g ‘10d)
ET = Eo_-k.ﬁ
BT=B,+B
T = )
Pe = Poo T Pq | (11e).

(ia) -

amy



: .whe'r'e' as always the subscript 0 denotes zero order, time—independent equi~
- libriuwm qua.ntltles and-all quantltles w1thout subscrlpts are small perturba.tmns

Insertlng Eq (11) into Eq. (10)

v By = drpge o (12a)

il

VB =0 S amy

. VX%Q. el

It
-]
=S

(12¢) _. :

and

- (124) |

<t

=y

o
>

vxE=-12 L aze

> 4
C

o|i-t'

= | . |
= - . :
J+ 3 5% - SRR o (i2g) -

e

In terms of ﬁhé distribution'funcfions, foo and £,

ey
[ =]

]

t4

e fapVee 1 asm

It
M

e, [dpf, e ¢ 1)

c...y .
I
™

gether Wlth the proper boundary condltlons at, for exa_rnplo the interface

| ~and infinity, . -

The basm equatmns for this problem are Eqs (1), (9) (12), and (13) to—- s R

between the beam and plasma and the correct regularlty cond1t10ns at the orlgm' o



The procedure to be followed is now outlined:

(1) . Firstthe self-consistent equilibrium distributions, fyy, are

found satisfying Eq. (l) 'with_ ?.;_g_'i‘ = 0, Egs. (12a-c), and
Eqgs. (13a,b). :

(2) Equation (9) is used to calculate the f_'s as functionals of
the electric and magnetic field components. "

(3) . The response of the beam and the plasma to the perturbation
1is then found by calculatmg pg and 7 using Eqs. (13c,d).
Therefore pQ and J are also found as functionals of E and B.

(4)4. Insertmg P and J into Eqgs. (12d-g) produces, in general a
set of coupled 1ntegro-d1fferent1al equatmns for the f1eld
' components. :

{5} - "The dispersion relations describing.the prop_agation of the .
- disturbance. are then obtained as "solvability conditions'™ -
for the set of equations. That is, if the equations are just -
ordinary differential equations, the dispersion relations
.will result when the solutions are fitted across the beam-
plasma interface (and across any other boundary that
might exist). If the equations are purely algebraic (as they
o are, for example, when the beam and plasma are each
S0y . ‘homogeneous and infinite in extent*!) or if the equations
' ' ' are integro-differential the dispersion relations arise as -
 requirements such that the set of equatlons have a'non- :
tr1v1a1 solutlon S :

A summary of prevmus work along these same 11nes for a relat1V1st1c '

beam now follows:

: isgo_ll—'l‘he procedure, as formulated above, is essent1ally the same as
_that of G, Ascoh However the beam response is calculated by Ascoh by

E usmg a s1mp11fy1ng assumptlon about E (e 2., E; (r) -Ar-mthm the beam | :

where A is a constant) and the plasma 1s cons1dered as'a sunple ohmic medlum;_ |

: "'-The calculatlon 1ncludes the effect of the self-field of the beam on the beam:

itself in the approxxmatlon that the 1ong1tud1nal mass of the beam partlcles is .

| "~ *References are listed at the end of the 'rep'_ort'." o
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infinite. Both beam and plasma are taken as having zero temperature. (A later

" report by Ascoli,! which incorporates thermal effects, is a heuristic treatment

and isnot a systematlc mtegratmn of the Boltzmann equation.)

BWR—Bludman Watson, and Rosenbluth1 consider a uniform beam and

- uniform plasma, both of infinite radius. Therefore, a complete Fourier analysis'.

of the Boltzmann eguation is possible and an orbit integration is unnecessary.

The effect of the magnet_ic field due to the beam is neglected and the plasma is

taken as essentially ohmie, collisions in the plasma being taken into account
" by introducing a constant, velocity-independent phenomenological collision

'frequency Different 10ng1tudma1 and transverse temperatures are assumed for .

the beam. The electrostatlc instabilities are found and growth rates computed

FGWWR——Frieman et al,,’ is"a continuation of BWR ' where the beam is =

-{aken to be of finite radius, of nonumform densfcy, and having Zero ‘temperature,

A11 problems regarding the solutlon of the- Boltzmarm equatmn are clrcumvented _

by assumlng that the current responses of the beam and plasma are glven by

T

3Pt ) T %
-driwd " = wpkE o ‘(_a)-
.~ 4riet JB= w_L'ZE' S o - (14b)

where wp and w L are the usual plasma and transverse beam frequenmes and the N '
“primed quant1t1es are measured in the rest frame of the beam The problem is -

- examined only m the case of very speclflc approx1mat1ons which may severely |
_lnmt the apphcablhty of the results, Essentlally the same 1nstab111t1es and

| ‘growth rates are found as were found by BWR, though the dlspersmn relatlons

have a completely d1fferent formal structure. o

Mlolsness—R M]olsn9582 cons1ders a flmte, Zero —temperature beam of

- uniform densﬂ:y penetratmg an ohmlc plasma in the approxnnatmn of 1nf1mte ‘
' 10ng1tud1na1 mass for the beam partlcles -Unlike Ascoh above, MJOlsness

o derives the_--_exact mtegra_l equations for the fields for a_rbltx_'ary .no_rmal_ mode.



. The reSulting very cbmpliCated dispersion relations come about as a solvability
condition for the set of integral equations. | | o |
_ This report is a direct extension of BWR to include a finite .beérn_. radius
- and nonzero plasma temperature. Equivalently it can be considered an extension
of the work of Mjolsness to include the effect of temperature. upon the high-

-frequency stability of the system,

- The procedure of this paper is, in principle, general enough so that all
types of inétabilities (St.reaming, electr'osta.tic, hose, etc.).can be treated on an
~equal footing. _waevép-the réstri_ction tb frequencies such that lw - k V,l? >> wﬁz' .

llimits the presenf analy;sis to instabilities that ére most closely related to the

| 3 streaming instabilities of the hydrodynamic models.

-




| III CALCULATION OF THE PERTURBED DISTRIBUTION FUNCTIONS

In 01der to use Eq. (9) to calculate the f,'s, it is first necessary to specify

- the zero- order orbits and the equ111br1um distributions. It is assumed here
that there are no external flelds and all partlcle den51t1es are umform 1n51de

-kand out51de the beam. Charge neutrality further requlres ‘a discontmuous Jump

in the plasma densrsy at the beam radius. The self- magnetic field of the beam -
will be neglected. The effect of ignoring the pmch field is expected tobe

negligible for Doppler shifted frequenmes much greater than the betatron fre—

. quency. That 1s the results of thls report are Vahd for modes that satisfy .

1812 >>
182 Wy
where
[ . - . V% B | . 471'6-21101
- Vo ’_ wg 72 ct YT 2w -_&-’.L Yem

In the above, Vo is the drift Velocity of the beam, m is the electron mass nm e

" is the number densﬂ:y of the beam and ¥y = {1 - V§/ 02} % 2.

- The over-all effect of the above assumptions is to make the equilibrium

.conf1gurat10n field-free. The relat1V1stlc ethbrlum distribution for a beam

' w1th drift momentum po and. temperature T is®

_-% [,y__.o p ]

~ where -
'_'Vo= Pc/'Yom
¥y = [1 Vo/czl K

._11 E '



K is the Boltzmann constant and A is a normalization constant determined from | ) '

- . ryis the radius of the beam For T > 1y, fpy is zero. However a umform den51ty, ;
- a uniform transverse temperature distribution a.nd a sharp boundary are d1ff1cu1t
to reconc11e in the equ111br1um sxtuatlon unless a confmmg force 1s present (as.

in actuaht_y there is, namely_the pinch- fleld)_. _Therefore_ smce_ the equ111_br1um L : L

Jap £, = n, o (16).

| - where ny is the number density of beam particles. Assu_tnihg with ]-Z_’.WR1 that a
. "quasi-steady state'' distribution aboat the drift motion will obtain_ such that
P =Dy + ?3[, where'. 14l << Ipy!, then, to second order iﬁ Iq! and generalizing
“to separate temperatures parallel and iransverse to the drlft Veloc1ty, the

- equ111br1um dlStI‘lbUthl‘l for the beam is

| - 1 [ 9 9y ] o
N +
S N S 2 .} yomé mo ' o
-_'fO:l = i . 1/ e Yo . + IY% -” ot . (17)
.(ZwyomB_L)(Zw'ygmB“) 2 -
In Eq. (17) 6 | and 6, are the transverse and longztudmal temperatures (multi-

plied by K), respectlvely, and q = q + q L) where q“ (q 30)p0/ pg. The

. transition from Eg. (15) to Eq. (17) has effectively mtroduced the two-mass _

approximation for the random motion -

Gy = Y¥mvy o © (18a)

E_L-'- YomYV) . L ) - (18h)

In terms of the random velocities.
_ ' Ny T2 . e
s Tome . e
.(Zaryomej_).(er'yomBH) i . K R o

o dv gy, = L : (20) -

: Equatlon {1 7), or equlvalently, Eq. (19) is assumed to hold only for r < Ty where

S12-



- configuration was assumed to be field«-free, this difficulty will be circumvented

by computing the perturbed distribution function, fi, only to zero order in B.L

The plasma is assumed to be nonrelativistic, to have no drift velocity, and to

have separate ion and electron temperature dlstrlbutlons The ethbrlum

. distributions are ta.ken as Maxwelllan

T mmK T,) 2 o '

-1 =T @b

 fgy = R 7
(2T MKT,) "

where T, and T; are the electron and ion temperatures, respectivel_y, M is the

. ionic mass, and, due to the assumption of a field-free equilibrium configuration,

“for r < ry, ny + ng = ny and for r > ry, ny = ng.

‘The zero-order orbits for t' < t are determined according to the conditions

tl_lé.t, whent' =-f,

> dx! P
Vt_-:d—tr =.. (V°+Vz)z+_VL

ry

- A~
X' =X =zz+

~ where the z direction has been defined to be in the direction of the_-drift velocity.

- In equilibrium

N T T I
o= - '_.22 R
Frw T e

and smce in the two-mass approx1mat10n (1 e, the momentum expanded to flI'St

o order in the random ve1001t1es)

Fewmbowef et em

..13



then

e
dt’

Hence

dx’
dt’

v,

dy’ ~dz!

and so, the zero-order orbits are (W = 0 for the ﬁiasma}

X = Vg {t -9

y - vy - 1)

z ~(V + vz)(t =t .

z -

(22¢c)

23)

. (24)_-.

Therefore the ne-giect of the pinch field allows the use of simple straight-line

“orbits for all particles. In the second report of this serieS', ‘more accurate orbits

(including the betatron oscillation) will be used to show that 'identicaiilfesult_s are

' The calculation of f; w111 now be shown in some detail f2 and f3 can be

| _obtai_ned in the limit 122 >> wg as are found by using straight—-line orbits

obta.med from f1 in an obv10us manner,

fi(x,p, f)=e f [E(x' B+ V1 xB(x' t)] -Vg'foa dt .

(200)

Let

. E (;s t) =-E (ry e 1(kz - wt) :

| Then,.using Eq. (12e),

"where -

oy
o

@5

@e)

Cen




Also

S| e

‘Thus |

£ (_??,-.p_.,.:t) = =g f [E (" + —Vl X (vn + 1k z) x B (r,)] 1{Lz L m.) |

(Z0OO)
(29)
W v S
['9-'" -+ E—E] fﬁ'l di!
_ L
Using Eq. (24)
éi(kzl— w:’) _ éi(kz— w-,t)eiEZ'— kv, 1 B t,) S : . (30)
' where .
: sz'= - kVo +ivg - (v > 0) .
:The mclusmn of v deflnes the assymptotic cond1t1ons at t! = - go that the .

‘ '1nte0“rals over t' converge. If for the plasma v, and Y, Where v, and v are the -

- elcctron and ion collision frequencies, respectively, are__r-etamed after the o
-integr'atiOn over t' isr’pérfto.rmed, it will be"appafen_t that, in the cold pl_aéma. _

- -Hinit, they are practically identical (for Ngy = ngg and M >> m they ére-exactly L

thé..sa;r'ne) with the constant, Veldcity'—indépendent _c'dlli_sién ffequenciés as"iisuallly |

_introduced v..rh_er.i'work.i.ng 1n the ffaxﬁeWofk of the hydrodynamicai ‘approximat'._i';.)n.i

' It wﬂi‘ be assumed that vp = - (This is-a good approx1mat1on unless Vg H%w k V.

- Ccmsequences of Vg 74 0 will be d1scussed in the second 1eport 01 th.LS semes )

- v and ¥ W111 be retalned as a measure of the colhsmns taklng place in the plasma. :

15



| Thus, l‘ett.ing 'r.= t -t

. : . . s £ ’
' i(kz — o V,+V
CLED) = -e ek f {1 + °iw X(V_L+ ik Z) X] (X-%T, y—VT)

DU 61
EZ kv Vz]
—_— f01 dr .
[94_ T

Let

-
Vy+ v

G,y %_1[1 + X (VJ_ + ik %) x] B (x-yr,y-v7) . (328)

- Then, expandmg in powers of \g‘T and %

ﬁ(x','y') = G&,y) - [ 59- + vy'a%]'é(x',y')lx.zx T +... (32b)
L. : - ‘ S yr=y o o

Usmg Eq, (24) and lettmg T=x% + y y,

G(r') G(r) - {V_L VJ_) G(r) T + 2 (V_L VJ_) G(r) 2 4. . '_(320)

) The 1ntegrat10n over T is stralghtforward using Eq (320) The result is.

_ wrltten in operator form:as

) °°.>.$.| il kv, -r. L .'i o TN o .
fo G(r)e[ ]d’r_—ﬂ kv+1(j o O e

. (the rlghtuhand side is defmed by the expans:on of (1 + %)~ for lxl < 1)

Let o

f (?cp,t) = 1 (>p) e‘“‘z““"’ e @9

' Therefore the results for the perturbed dlstrlbutlon functlons are -

H ,.D).-_ T T Qeky, t+ 1 ({}l V.L) E(r) o _X( At 1 _)__ B o
_[VL._-;Z]_f. o )

6, oy

16



2 ‘ ie S o v A o~
= - > )+ x (T ED| ——
- HED w.+ive-_~kvz+i(v_,_-V_'L)[E(-r) f X (Ll B x ()]

' '_'and _

~ ie : S v - e
= — ik z) x E —
f@E,p) =+ PRSP V)[E(r)_fiw X (V_’L‘_“,_ z) x (r)]

. /‘!

- 2 ,: AR : co L - 17




Then, using 'Eq. (353.-0),

IV THE BEAM AND PLASMA CURRENT RESPONSE

Using Egs. (133.'—d); (17), and (2la,b) the beam and plasma currents are

) found to be given by

do= —eny Y . S R (36a) -
: .:.B.:.._'-.. o 5.3 5. > = ' _ o .
To&p.t) = -eyim®[ & G+ L&xpt) . (36b)
Jg =0 L S - (360)
CTPERY = - e J VVIMLEDY + MGED,H] . - (36d).

_sB.:a..a- “ 2 5 3 3 .i S Vg-i- . N
J5@.p) = e’yjm fd (Vo+v) ST | E® g, x ik d
X E(r) . - + "_' f(n ) ) . . : _
and
-315;"" "-2fd3. > i ,[.:._:. _;?f .. . .k,\ E;]
= : — . - +
e = e A Y T v Y, Y, E(r) + o x (L ik 2) x B)

Sfmd M1 (38)
' [KTf KT.f°3]"

- In Eq. (38) vP represents e1ther or ¥, _th__i.s_' dif_f_erentiati_oh being reinstated

_ Zin the final result given for J (see p. 23).

o For the reasons 01ted following Eq. (20) the beam current will be calculated : '

S to arbltrary order in 6 but only to zero order 1n 0. Also it is obvmus from

. the form of the denommator in Eqg. (38) that the major effect of plasma tempera— '

ture is due to the thermal motlon in the z dlrectmn Hence for 31mp11c1ty, the

plasma current .wﬂl be c_o__mputed .only up to the flrst nonvanlshmg _contrlbutmn.




| : : : . K |
. of the transverse thermal motion. That is, terms of order mz; and: 11\{{321 are-
L L L g +iy, |- +i Y
being neglected relative to unity but all terms of order IQ;{S e and Iwk{j' 1| s
. . . . i e i

for example, are retained where KT, = mU? and_KTi. = MUZ.

B, 9.5 3 3 1vy = %+Vz
Jl_—eyom J dv g-kv ° " e

A

-3
£ x (v +ik2)xE ]-%fm (392)
) | TR

IRETAY/ +V) V) +v, . S v
eqzmafd3 (0 {[E+ O'i .zx(vl+ikz)x-§]'- a

0 h|
: i(VJ.'V_L) 2 v vL o
= = - — 7 — 39>
+ [ oKV, e kv)(VJ- _L)zx(Vl+1kz)xE+1w (39b)

. . ..'..A = .%:L )
X(VL'I'].].{Z)XE 'a fﬂl‘

o and

SRR VRS v \(s 3 =\1
I = e? [do ———L——[(l—#)(EﬂLT‘LX(VLﬁLikﬁ).xE)]
_ w+ivg-kv, _r.u_+1vP-kvz “dw T _

o AT LM
T lkT, % T KT ™

OGP o2 (s, 1% o IVJ_ VJ. IRANS
CJ, e fdv———"—“"*-+. % S kv, _ {w +iv, -kv)°
: . wtivp-ky, w iy, kv, (@ +ivp- V)
: R S o Lo (394)
Y S : | 3 S :
: ¥ . N = .m M
| (E T (VL+ ik 2) xE)] : V[ﬁ"fuz-*' E'T—.foa ] -
(The vector operations in the above formulas are to be carned out fII‘St

w1th1n the square bracket and stepmse from r1ght to 1eft )

The vector identities needed for this computati.‘on are -listed in the appendix |
- expressed in cylmdrical coordmates The mtegration over v 1s done usmg the - :

following formulas, Whlch are easxly ver1f1ed




N

o Javey g

f ady f(;z '

1!
Alg

BECE-EM = Ja Vily = -

B e

(40')_. .

C = E __ )
fdsv _V?_fe-z_— T

e s (KT, \2ne .
'fdaVViZijfoz =(““_g) o G

e ‘.22_ - (
fd_v.(v,) o= 3\
Also
A S _ "';"_gfiviz'
i F depends upon v, only in the forme - “ '
. Defining E = _&_r"é L, En = drzz , ete., then the result for the beam

e current is . -
- ~4miwJ® = B E, + ByE! AT

 oamwd® = BE,
R o 1




Y m 3V+V
'335"}.0 fd kf(}l-

01‘!’1 3 (V0+V)2
(- kv,)‘-’- o

B4=-.!2—

ol = dre“ny -
T Yom

: dreln |
2 _
_w". —3—QL .

The plasma current is

- 4niwdF = (Py+ P E, + Py E}

- 4miwd] = (Pt P)E, T N -

o L ' | 1 ik '
- 4miwdt = (P + PY E, + PS(E;.+ -;_—Er)+' P5(Ey+ ZE; - —E )+_P6E;'
} - where

o2
Pi.. ; (x)P.

i

kv,
@y iy
VZ

- i(w +1ivp) fdv @ +ivp k)2 fas

P o= [yt [am o m o MM L]
_"P.4 : fd v wtivg -ky, [% g KT, ® ™ ngg KT, e

o
o

= - 3 Z .
Ps '-_-' fdv (w+1vp-kv)2 f23 c

' , kv3 o
- = dsv :
P“ f (w+wp-kv>3 f”'

(Note that P2 =ik 133 + k2P5)

A



Here

md M
Wl — g+ wl =iy
oD - Doy

s?
ca
H

and
T B
wP - _ws +wi.:

where

_ 2, '
g _ 4dmeing W
. m wTil,

and_'.

.w2 = 4?re2n03 .w
St M W +iy

The total.perturbed current .ca_n be'W'ritten as

driwd, = o B, + 0%_1_1{ E!

i

]

< o
el
=
o+

o '411'in9
Lo 41rin = 0lE, + o
z 3 ~z 2

. wWhere

16
I

By+ P+ Py

o} = ik Byt Py
= By + Py + Py

by
.

r2
[l

- K (B + Py -

- kP .

- q
@
I




"~ In terms of the usual dispersion integral* '

S e [ o 2] o
| ; . IRV RS
Z, (59 =\7‘;“f fme T LV - Mo [

where

BT X U, for thg beam_

RN : .
B, = £ - for the plasma electrons
e kUe ] .

w+iy S '
8 = —E—ﬁ—l—-‘— ' for the plasma ions

and 6 = ¥mU, KT, = mU} KTy = MU,

SO R B i[“mz] w.%Se-'[Z‘e « sz ots [z, v, 2]

L, W | A
O3 = -~y m[l _+--'SBZB] - W s [1 + 8, e] - Wis] |:1 + s_iZi]r.'

OE = ._:wz r _+k£IL}B B] - wi [1_‘_5e Ze] -—{.0% .[]_-i- Si_zi]

-

3 Zw w?

' G% - wj_. I_]? +_1_{_UB ZB k2U2 2113]_4-- C:JE .[1 +2 8, Z, %.-Se Z.e‘:]
+wl 1+2s,2; '+"s§Z;]

of= -~ wh|1+38,2, 43802+ s] Z;j-]

.o

- w? 1+-3sizi+3s§z-;+§s3,z;'] .

_ : *For discussions of Z(s), see .Réfsr,- 4,8,and 9.

PV .: o



The expansions for Z(s) are, for lsl> 1 ("low" tempefatures)

L - : o
_ ../ 27 11 3 L
Z(s) f_aljz_e Ts T _ . (463)
where
2°Ims < 0" .
a= <1'Ims=0"_
0 Ims > 0
“and for sl < 1-(”high” temperatures) '
_—S . . . .
T la_ 15, .1 1 : :
Z(s) = / -8+ 3" _— 15s o5t _(4ﬁb) __

K {'It' is of interest to note that gince the time dependence has been defined as
9 then an unstable mode has Im w > 0 which implies Im s > 0. Therefore
for an instability a = 0 inf.Eq.“ (46a). However the imaginary term in (46b) is

| alWays present. ] '

: Applylng Eq. (46a b) the follomng is obtamed for ZERO PLASMA

 TEMPERATURE: -
of = wi +_w§,
0% = OJJz_ [1+ i{%;zp]
B B 5l L ) I T I
i “"i[“ mzﬂ]
2 - w?

‘24



And for ZERO BEAM TEMPERATURE AND ZERO PLASMA TEMPERATURE:

2 . 2., 2

di wi+wp
kV,
2 0
of = o} o
. . 2
2 _ 2 W
) , KV, 47
7T o |
9 _ KV
) =
I LTar
o= 0.

1t is to be especially noted that the zero beam temperature and zero plasma

temperature limit agrees with the hypothe...si's of FGWWR, Egs. (14a,b). Or,

equivalently, the statement can be made that, in the limit of zero temperature,

the methods of this papér reduce to the usual hydrodynamical treatment.
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e

. . - (VJ_+ ik Z) x ‘:(VJ_ + ikﬁ.‘).x E(rﬂ+%‘}2——E(r) z -

V MAXWELL'S EQUATIONS

The basic equation for the electric field is -

el

K 4 : e
i ~(483)

2|
|
sle

VX (VX E) + pca
The magnetic field is obtained from

o
9B
ot

&=y

= -cVx (48h)

Defining, as before, . .

Bt = BE@e- SN CCE

" theén

Aoy 3> o ; -
c? J(r) s (49D)

=

and

aa ¢ . o A -'h-t . o
B(r) e (vl+1kz) xE(r) . S : _(49.0). .

" Assuming a normal mode expansion

| = e o (50)
B EReen e

| th_eh_ Egs. (49a,b) become (suppressing the subseript '£') ©

1 Tor 221 rmiw. o Tee 1.7 #ko ol
B+ .;Eé".* i —EEIE = - -az—__Jz%.lk-_[E,‘-f ;Er]: ST Fe o 1B

R Akt 1| Camiw. . i, L B
CEg e+ TEL 4| T g [ B = - TE Jet L | By BT ikE

e



e

232,22 ' S SR :
._[.E"_:%__C.__%:]Er hﬁgﬁa ik By + 22 E'+%Ee:l (510)

c . r

For the rest of this paper attention will be restrmted to the £ = 0 mode. The
equations are | | |

2 4miw

By« TEL+ %E, = - Ty k[i +%EJ e - (52a)

r

. 1 wiode? 1 '_  4mie . o .
.Eé‘+ ;E'e+ l:—cz— .-_2 Ee = __T_Je _ : C (52h}

c

C

s ¢

B =+ l:- ik Eq £ + (KE; - E}) 3+(Eé+ ;Ee) z:l . " (52d) -

Using Eq. (44) for the total c'urrent, Eq. _(52&-—0) become '

Ep 4 2§+1

where

o< WP - o

i (wi-0}) (wi-kic’-of) -
Rty " @] (oot + (o)

- 28. '

-c§=|j-1-1"?—E-z-1kE:|“+[1kE —E]§+[E‘+— —E:\ . (51d)

2 122 - dri ' R
[-—-—-5-——“’ kcJ E, = - g;“’_J,f_ikE; - (s

| 2 9 P R i o |

“where Eq. (53¢) _has already 'b_éeﬁ used to eliminate E_ from Eq. (532), and -



and | £ = —;:

(040D (sct-0}) - of (wi-kic?-o})
(wz—kzc )(1{202+02+02) + (kc 05)2

_ For ZERO PLASMA T]:MPERATURE

(w ~od)(w? K- of)
(il o) (i .2+cr5) + (kPc?-03)*

.- ,82 =. Kk?
and _

£ -0,

" For ZERO BEAM T.EMP'ERATURE AND ZERO PLASMA TEMPERATURE

. ’ ’ 2
w
(#eiui ) (weatat)

"-_32':12_ ) 7
. 5 K*V, . k¥
2,22 2,2 0 2,2 28 Vo

(. —k2c?- o/~wp )(k + I 92)+(kc @) )

_and_

£ =0,
The solution of_mEq.,,,,('53a,)Wis,,,_,straightforward-. -For arbitrary 'temperatures N
'E (@) = r-’-gfzgwr) S .  (54a) -

where w = ,8 T, Zg (w} satlsfles the’ Bessel equatlon

REAUR: Loy + ["Rg‘f:]zg W = 0. ()

For the remainder of this. report the zero plasma temperature limit W111 be
' 1nvest1crated and so !g w111 be set equal to Zero. Thus the results should be > valid '

'3.asloncras S

e+ iy 12 o> KTe _-|w+iVi.|2-'>>' KT; .

k% me? a.nd.- “k?c? © Mc? 69

Since the'plasma was_'a'ssumed to be non;relativistie the right-—hand sides of

- Eq. (55) should be smé.ll' These inequalities are con51stent with-the neglect

- of the pmch fleld except for those modes Whlch have y, << kc >> w “‘B :

20 -



é.ssumincr V; = ¢. £ # 0 will be treated in detail in the -hext,report of

_thls serles

Equations {52d, 53a-c) must be solved w1th the proper boundary and regularity

~ conditions. Let o* & (r - ry) and T* 8 (r - ro) represent the surface charge and
B current, respectlvely, on the boundary located at T = . Ty, Where & (r r{,) is the' _

-one—d1rnen31ona1 D1rac delta fUIlCt].OIl Usmg Eqs (12d) and (12g)

AE, - 4ot s
AB, = - Th* | ,' o (56¢)

Where . ' AE = E

P T
outside inside

'_'All other components of the fields are continuous._ From Eq. (12g) -

- ik A(Be) = ﬂ ATY -2 A(Er) o o (56d)
_. where .
A@F) = AWJL) +A(J,)... I | - (56e) -
Equatlons (56ab ,d) are comblned togive - R B R . ﬁ :
Ay = i (wo* - k3, h.o o e
Lei: |
o* = GP* + _0,']; O R .(573,) '

where g* 1s contr1buted by the plasma and O‘B* is contr1buted by the beam Smce _

P

'the rachal current is only a.small perturbatlon on the drlft motion of the beam
. particles it is reasonable to suppose that, in the plasma frame of reference the':_ '

" total _surface- current is due to the beam. There_fore

ng.. - 0. (57b) .. :




. Now Eq. (56f) becOmes _

R v A feogreey. (57¢)
Assummg that o'* and 0* are deposited on the surface hy the d1scont1nu1ty of the -
- radial components of the plasma and beam current, resPectlvely, then usmg
- Egs. (56e) (42), (43), and (57c) '
drlaF = - drieAd)) = aA[@ + PYE, + Py Ef] IR
R .8 oA
dmoQot = - 4ricA@) = A[BE, + B Ef ). (58b)
Hence, from Eqs. (56a) and (58a,b) " o
= = — E = """- - o - (59
et S A g adh . @
. 'Exp.ressing'Er in terms of E; by Eq. (530), and using the facts that
S 0} = By + Py + Pyand o} = ik (By + Py), then Eq. (59) becomes .
L A(WED = 0
) where | N
_: R S (w2_0.12___.ﬂ_0B1) (kzcz_o.%) + (wz_k202_012)(0§_+ik__§_2~9_.B3) .

W = - .
o w? - k%? -0

where the reader is reminded that

.Bi. = wi '
: :and E
o 3_’k J. kU 51 .
_ Therefore the regularlty and boundary condltlons for the E = 0 normal
_modeare PR

(U'E E E,, E}, E} S mustbeflmteatr 0andr=.oo', :
(2) Ee’ E » and WE' 8 R are contmuous at the’ beam-plasma mterface."" '
"'(These boundary condltlons are Vahd :Eor arbltrary plasma temperature ) s

Er e

K \ . - -
' . . . ' . .




VI :DISPERSION RELATIONS FOR AN INFINITE PLASMA

The solutions of Maxwell's equations outside the beam depend wpon the
phases of 8 and 7. The heam is assumed to be a cylindér of radius r;. Hence-
forth the notatmn will be used such Lhat B Bs for r <Try, and ,8 BL for r > ro,

and s1m_11a11y for 7w, 01, ete.
| ~ 'The solutions tp Eqgs. -(53a',b) that satisfy the regularity condif;ions_ are
” ..r<r0:.. E,(v) =Cidy B o o .-_'_(.61a)
” E(r) = C4Jy (ng) IR . (61b)

r> g :ImB'L >. o,'ofzmﬁL'z 0,Re B, > 0

E L) = Gy Hy ® (g 1) |  (6le)
o e e By = o | |
| CE@m=C S (61 -

Imn, > 0,orImn, = 0,Ren >

Eyr). = C; Hit-i}(ﬂll,_r)' o (61e)
=0 | _
B E '(r)' = Cg= el

e 6 (61h

: where the C| s are c,onstants of 1ntegra1:10n. For the opp031te sign of Im BL
' the same solution ard dlspersmn relation will be obtained except. that Hm
| . places Hy (1) Hence only the solutmn for the case of Im B >0 W111 be- ngen

. explicitly, and 51m1larly for E in terms of the phase of nL

32



Case IV:

The coﬁtinuity conditions at r = ry give the following relations

- IWher_e J! (U). = 43t , ete,

dU
“Case It ImBL > 0orImB; = 0,RepB; > Oand - _
C1 3y (B wo) = Cy H{Y (8 v9) ' . (623)

Gy Wg B3 33 Bsr) = Cy Wy By BV (Brrg)
Case II: BT o
JICiJo(ﬁsfo). =C R - (62b)
Gy Wy 3SI.J6 (551'0) =0 - o o

Caseé III: . Ian> 0 or Ian = O RenL> ¢ and

Cidy (g -».05H1’(n,‘r0) | o (e3)
| Cymg 3] (1519 = Csup B (g -

."nL_-—".O' and . _ _
Cq J; (MgTg) = Cg T S - (83Db)

L 1
Gams gm0 = =G

The DISPERSION RELATIONS for the case of a cold 1nf1n1te plasma, as
ohtamed from Eqs (62 63) and using the 1dent1ty

,zJ' (2} = '-vJ (z) + zJu 1(z) ,

whlch also holds for H “’2) , are:

CaseI: B ImBL > 0, OrImBL -_ 0, Re BL > Oand
R = o . S - (64a) -
- Case II: By = 0 and

Ws Bs J1 (Bsro) o - P L _“(6415):,'__' -
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Caselﬁ: --_.Ian>Oor—Ian—ORenL>0and .

.- Ny Iy (MgTy) H! )("?Lro) = Ngdp ('ﬂbl'u) H1( )(ﬂLro) N (64¢)_
Case IV: Ny, = 0 _ and _ _ .. | . |
| o agdlgry =0 (64d) -
where . - | |

it = et - K - Wl = gl .

The dispersion relations, Eqs. (64a-d), will now be discussed in 2 preliminary-

: fashion. There are two main ways of analyzing these dispersion relations?:

(1) specifying a real value for k and searching for values of w
- satisfying the dlspersmn relations or’ _ -
© {2) specifying real wand searching for the correspondmg values
of k. : .
In the first case after a disturbance occurs at a particular instant, solutions are
classified as to their e_volvement'in tix'ne: damped oscillations if Im w < 0,

oscillating solutions if Im w = 0, and unstable solutions if Im w > 0, In the -

- second case, the solution represents the effect of 1mp051ng a perlodlc dlsturbance

- at some Cross section of the beam and its evolvement along the beam for increas- -

'.-_'mg Z: damped oscﬂlatmg, or unstable solutlons forImk < 0,Imk = 0, and’

‘Imk > 0, respectlvely (In this case an unstable solutlon represents the unhmlted _

increase, at cross sections for which z - zy — % of the disturbance Wthh ;
: or1g1na11y took place at z;.) It is, of course also possﬂole to find solutlons for w

- and k both havmg 1mag1nary parts The dlscussmn here W111 be restrlcted v

. _ pr1mar11y to real k and complex .

-The dispersio_n relatio-ns found by BWR fo'r the in:fin_ite' beam case W_ere'_

“classified by them as electrbstatie'(ES) and eleofromagnetic (EM):' :

B w%+ R R S NG
L2 2 2 W' Q2 I
LB et = ep - Pt l:l kU Z_B:I T {650)
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These results are reproduced here by noting that a solution of Casel ils _

- By = OandBgry = &{,ﬁ, where Gy 18 the nth root of Jy (@) = 0, Since oy, # 0,
B ‘this solution is possible only for ry —>*® amd, using the definition of 85 , Egs. (65a,
b)_ aré obtained. (_That these modes still correépond to EM and ES designation

can be seen by noting that since, for ry —*°°, E, is given everywhere by '
(wZ - k202 -0152) Er = . k [k e - 0'25] 185 Ji (BS r)

then when w?-kZc?-g;% =0 E, can be non-zero but E, must be zero when

w? = 0325 J Itis qﬁite obvious that the simple ES dispersion relation of BWR,

" which gave the .only instabilities in the infinite beam case, does not resulf for ry
.finite. Howevér, it must be emphasized that it is very probable that furth_ef.
analysis of the complicated dispersion i’eIations, Eqgs. '(6-4a-d), will unéove:_r un—
stable solutions with growth rates comparable to the infinite beam éase {cf.,

FGWWR) However, it should also be noted that Cases II and IV correspond to
'cQB,Lz - canz = ol - KZe? - 2P =0

| Wthh only allow damped solutmns Thus only Case I and Case III, Eqgs. (64a)

and (640,) need be investigated for unstable solutlons




e

VIl DISPERSION RELATIONS FOR A PLASMA BOUNDED
| BY A CONDUCTING CYLINDRICAL WALL

The plasma is now assumed to extencl out to a cyhndrlcal conductmg wall of

radms Ry > ry. The solutmns of the f1e1d equatmns are now

r<rg Ez(r) = Cidy(BsT) - . o _. .. _ _(56_a)"

E (r) = CyJy (ngr) -  (66b)
re <r <Ry B #0 '_ . | _ |
| OEM = GHM @ + e EMEy . (86
B = 0. . _ _ _
CE, () = G+ Cilnr o " (66d)
L # 0 | S |
Eor) = CsH{" @ r) + Cf B (1) o (66e)
nL = 0 _ _ ) . . _
Eor) = Co3 + C} r..;- | I ol

The effect of the plasma sheath at the conductmg wall is neglected (Hence

-under 1nvest1gat10n here is really the physmal situation where the plasma is

' _separated from the conductmg wall by a very thin layer of neutral gas. ) The

boundary cond1t1ons at the wall (assum.mg a perfect conductor) are such that

' the tangential ¢omponent of B and the normal component of B ‘are continuouss. .

" both are sat1sf1e«_:1, ‘for the L = 0 normal mode, if Ej(Rg) = 0 = EZ(R(,).

L.
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The resulting dispersion relations are:

. -'.ﬁL';'é 0 and

Bu Wi, 3o (65 79 (1" (BLR) 1P @Lro) - B (8 Ry B By ]

| | (67)
= Bs Ws J; (Bs Tu)[Hom (BLRg) He?) (B 7) - H(,“_’(BL Ig) HO(Z)(-BLRO)] .
By = 0 and | |
- WrJp (BsTo) =85 Ws Jy (B ry) ¥y 111‘1,"0’ ' . S :))
mp # Oand |
ML 1 (75 o) [Hom(”ﬂLr_o) H{¥ (L Re) - Héz}(ﬂLl‘u)'Hf”(ﬂLRo)] |
| . | (69) -
=5 3 s [ B o) 1P 0 Ry - B ey BV Ry |
and finally . |
7. = 0 -and
Y o s B - T Jotasro) = - 2rd sTd . (10)

It 1s important to note that Eqgs. (68) and (70) have bnly 'dampéd solutions _
since By = 0and 7y = 0 both imply w?= k?¢? + wh. It is also interesting to

note that the EM mode is still present as a solution o‘_f"Eq.' (69).

38




' VIII DISPERSION RELATIONS FOR A FINITE PLASMA BOUNDED _BY'VACUUM

~In V:acuum, Maxwell's equations for the 1 = 0 mode are

BepEealE =0 ()
| 'E'~+£Ei+[ﬁ2 41_'] E =0 oy

I v - oyl e - _
{7lc)

72 E, = ikE}
where . el = ot K%,

The plasma is assumed to extend to Ry beyend which vacuum extends to

~infinity. The solutmns for the regions for which r < R are given by Egs. (66a-f).

'In the vacuum the solutlons are:

- Cr s 'RQ: a Imn >0 , or Im_nu_=_0 , Ren, > 0and
_e(r_) = .cs Hi”_(n,,_r) R . (12p)
and m, =0, Er)=Cy | : o 3 o (72¢)
Ee(f)-_ = Cp2 z (72d)

R

Smce 1t has been assumed that in its own rest frame the plasma produces

no surfaces current then at the plasma-vacuum mterface, :

2 cerd

2,2 . 2 '
- kc —0'1

instead-of WE] , is continuous, -

SO
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. The resulting dispersion relations are
Bi # 0andIm 7, > 0 or Im'nu =0, Re7, > 0:

wi-o2 2
-0 1.-927,

C By WL Jo BsTo) [BL T, ', Ro){ i @ ro) B{* B R

: Wl
H{ (3 Ru)H‘Z)(ﬁLro)} o kz 3 M, Hi 1 (n, Ro)

{Ho‘“(ﬁ R@H‘ "BLro) - Hu ‘wLRo)H cBLro>}
| B a3
wiofy, —UzL

= B WsJi (BsT0) [BL TR T, B ’(n Rq) {H (8, ro H{®) BLRo) -

- 1 B v 1 (BLRo)} i wszcz n, Hi‘i_’ {m, Ro)

’ IR - | _I{Ho(_”(ﬁL'Ro)H 2)(3L1‘a) - Hm (BLTO)Hm B RO)}] _
Bp = 0 and Iz.n"nu >0 or Imn, = 0, Rem, > 0:

R Qz 1), - . ‘ "U%L UzL o (1) _
Wi _JU BsTo) 7 72 ﬂuH; '(ﬂ‘uRg) = Bs Ws J1 Bs I‘n) Kol Ry (11,, Ry)

T R )
+. ..mnyro.ln?% 31__1.(’% _RO)] .
BL 7‘-‘ 'OI'Iand .'T?u = .0 .= _
o WL 3 {3sra)[ R 3, Ry T’ ‘(ﬁLru) - uft) g, xg B2 (BLRo)] |
SLE | | o o9

= Bs WgJy (BSIID.).[HI(”(BLRO) Héz)(ﬁLro) - H' (8 1) H1(2)-_(_31,3-0) ] |



= VL ""nL %'O and Imn, > 0 or'.Imnu = 0,Remn, > 0:
iy Iy @ 7o) [nu H{! (, Ry {Hom (g ro) B Ry - H (ny, o) H{Y (.nLRG)}

+ny B9 (0, R) {Ho‘ )(TPLl"o) Ht ’(nLRo) - Ho“’ (. rq) Hf®? mLRQ)}]
| (76)

= g g (g0 [n H“’ (ﬂyRo) {Hi“’ (ro) H{? ’(nLRo) - m (1, Ro) Hi‘ ’(nLro)}
+1; B (1, Ry) {H* )(?TLRU) Hi‘ )(TJLI‘o) - Ho”(?? Ro) Hi‘” (nLroH
.nL—Oa.ndImny“;-OorImn ='0Reny |

| Jl (MgTo) My To 2 H{ (n, Ry) = Ns do (g To) [2_ Ry H" (n, Ry)

. {(77)
-, @ - EO0,R)] -
'-nLaéOand n, =0: |

SRR M9y (ns ro | 1§ ’(n Ro) H‘z’ @ ru) - Hom ED Ho‘ ’(n Ro)]
P e T 4 (78)
Oy =g Jo tns 1‘0)[ X Y (.o H‘ ’ero) - 1 (1 B BN (r, v ]
S The cases ofn, = 0 and BL = 0 or nL = 0 are not_ 'possibl_e for zero plasma
R ~ temperature. | BRI
. .' _.It:is important to ﬁotiee that Egs. (74) and (77) only admit damped solutions
'5 - ~ since Br = 0 = 7. Also Eqs (75) and (78) admit only osciliatory solutions
T since 7, _.= 0 1mp11es w? = k2 2 It is also mterestmg to note that the EM mode S
SRTN s st111 present as a solutlon to Eq {76).. :



IX CONCLUDING REMARKS

The main results of this report are those dlspersmn relations that may.
' possﬂ:}ly have unstable solutions: Equations (64a) and (64c¢) for an infinite. pIasma,
Eqgs. (67) and (69) for a plasma enclosed by a cylmdrlcal conductlng wall and '

Eqs (73) ancl {76) for a plasma bounded by an infinite vacuum.

‘Tna subsequent report, these relations will be _analyz_ed in order to 'asceri_;ain
N whether fher_e_ actually are any:ﬁnstable solutions. Espeeially interesting will be
the answer f:o the following question: Are any unstable modes for an infinite '

: plasma stabliied by .a bounding Wall or Vacﬁum or, possibly, -Vice-versa? The
dispersion relations will also be.generalized 't.o include seme- of the effects
ein_itted in -th.is. 're.port:' _plasma 'temperature,_the pinch field, beam collisions |

- and higher normal modes.
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et : ’

~are glven in cyhndmcal coordinates using the notatlon E' = dr , Et = ‘a‘—"g'

APPENDIX
VECTOR IDENTITIES IN CYLINDRICAL COORDINATES

Listed i in this appenchx are the vector 1dent1t1es necessary in order to oh-

tam the beam and plasma current responses, Eqgs. (42) and - (43). These identities
dE d*E
T
etc, a;nd are for E bemg 8 mdependent (i.e.,the £ =0 normal mode) only."
Let
' : A =
C = VO + Vv
F_(r,v) = E(r) +

X [(Vi. -Fik z) xﬁ(r)] . - o '_(A-l)

- Where the factor, e‘(kz Wb g understood on both sndes of (A—l) and in ail the

formulas to follow For the plasma. Vo = 0.

Thus _ : _ _
: F(I‘,V) =T L w E. + iw E; + iw . (EG + r EG i
L aToky . v, ( L1 )] B o
o - L+ = - . : A-2
- - _V_r_ . . .! - . _'Vg : E K ..
. o+ z _Ez._-+. o ,(1kE, - Ez) +_"iw ik Ey _-
PO = A . 1. - Vrﬁ 2
(v -V)F =r [vr E; ~ VG-.;EG_% i (E"+ E') e
Y V+V oL oy, V.+ %) 'lk R
. : _ 1w . T
1 Y 1 1Y % (VE)
+ 0 ['V E}+ vy —E . 1w(E'ehzh—E{, "_zEe)' ( kEe)

- (%+V)1 ," - vél ,1 L
+T (E 1kE)+_—a-J_ (E +;Ee)] E .(A-S)__

4 [VE"*‘-"(lkE' - EH) +__c:,....1kE1] e

CoaT



-~ The following is only needed for the plasma so V, has been set equal to zero: :
S oondoalvEr -2ty v Lfog L

1 -1
=y

- 3 o ik - 1
oot (B Ey ogm g R) < v w3 (28 1)

1 '. o 1 . 1
4%V g GKE, -E) - 9 7 (Eé *;Eﬂ)]

=

o+ 6_[VE_E3 ‘T‘Véa" Ty + Y, ve% (Z_E;_ —-Er)_ R (A~4)

| 4 v,.i-\re"Vz ('E;"-_ +% E! .'-' ik [E;' + %_-E;] )
a2 11y, ik T

2 4 = = 2y =
Ve o (Eg + rEé - 2E9) * Vg Yy 3 Ea] :

+ E_[.vf. Ey + v3 (kEl - E}') + v2 vy ik Eg] :

Ee) £ viv, By -ikE}



ACKNOWLEDGEMENTS '

The author wishes to acknowledge helpful dlscussmns with H. H. C. Chang,
‘E. Barston and H Smghaus ' [

49



